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Abstract
We investigated a simple D-term inflation by taking into account higher order
corrections in the potential, particularly, in the Kähler potential. These terms
make an inflationary potential flatter than logarithmic in the case without these
higher correction terms, through one-loop radiative corrections. As a result, the
mass per unit length of cosmic strings formed after inflation can be suppressed
and its corresponding Gµ is several ×10−7. In addition, the change of the
potential slope simultaneously leads to a more tilted scalar spectral index
ns � 0.96–0.97 than that in the model without these corrections ns � 0.98.

PACS numbers: 98.80.Cq, 04.65.+e, 11.27.+d

1. Introduction

Inflation in the early Universe not only realizes globally homogeneous and flat space, but also
provides the seeds of density perturbations [1]. To realize successful inflation which matches
observational data of large-scale structures and anisotropy of cosmic microwave background
radiation (CMB), the potential of the scalar field which drives inflation, the inflaton, must
be very flat. The required flat potential may be realized with the help of supersymmetry or
supergravity. In supersymmetric models, the scalar potential consists of the contribution from
F-term and D-term. In F-term inflation models, a slow roll parameter η ≡ V ′′/V generally
takes a value of the order of unity, although η � 1 should be satisfied for successful inflation.
Here V is the potential energy density of the inflaton; the prime denotes the derivative with
respect to the canonical inflaton field and we take the unit with 8πG = 1. This is the so-called
η problem of inflation models in supergravity. On the other hand, D-term inflation does not
suffer from the problem [2]. Hence, D-term inflation appears more attractive than F-term
inflation from this point of view.

However, it has been revealed that the D-term inflation model also has some troubles.
First, one may suspect the potential for D-term inflation not to be valid, because the inflaton
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needs to have a large initial value of the order of (sub-)Planck scale for a natural model
parameter [3], although one of the motivations of the hybrid model [4] was inflation within
the inflaton field value below the Planck scale [5]. Second, the cosmic strings generated after
inflation significantly affect the spectrum of CMB anisotropy [6]. In addition, recently, since
the release of WMAP 3 year data which indicate a slightly red tilted spectrum ns ∼ 0.95
[7], several researches mind the discrepancy in the scalar spectral index suggested by the
observation and predicted by models (see, e.g., [8, 9]), because simple supersymmetric hybrid
inflation models predict 0.98 � ns � 1. Hence, D-term inflation seems to be under strong
pressure.

Here, motivated by the first issue mentioned above, we study effects of higher order
terms on the Kähler potential in D-term inflation [10], although the leading term in the Kähler
potential was taken into account in the study by Rocher and Sakellariadou [11]. These terms
alter the dynamics of the inflation and the resultant constraints on the model parameter. As
a result, the predicted mass per unit length of cosmic strings can be reduced and meet the
observational constraints without assuming a very small Yukawa coupling as in previous works
[11, 12]. Moreover, the scalar spectral index also more or less can be reduced.

2. D-term inflation

Here we recall problems by reviewing the D-term inflation [2]. We consider the N = 1
supersymmetric U(1) gauge theory with the non-vanishing Fayet–Iliopoulos (FI) term ξ . The
minimal model contains three matter fields S and φ±. The fields φ± have U(1) charges
q± = ±1 such that ξ > 0, while S is neutral for U(1). Supposing the following Kähler
potential and superpotential:

K = |S|2 + |φ+|2 + |φ−|2, W = λSφ+φ−, (1)

the scalar potential is written as

V = λ2 e|S|2+|φ+|2+|φ−|2(|φ+φ−|2 + |Sφ−|2 + |Sφ+|2 + (|S|2 + |φ+|2 + |φ−|2 + 3)|Sφ+φ−|2)
+

g2

2
(ξ + |φ+|2 − |φ−|2)2, (2)

where g is the gauge coupling. The supersymmetric global vacuum is at (S, φ+, |φ−|) =
(0, 0,

√
ξ). For a large value of S,

|S| > Sc ≡ g

λ

√
ξ, (3)

the potential has the local minimum with a non-vanishing vacuum energy density at |φ±| = 0.
The radial part of S is a flat direction but it acquires a non-vanishing potential through radiative
corrections, for supersymmetry is broken due to the non-vanishing D-term. In this regime
the scalar fields φ± have masses m2

± = λ2|S|2 e|S|2 ± g2ξ , while the mass-squared of their
fermionic partner is simply given by λ2|S|2 e|S|2 . As a result, the one-loop effective potential
is given as

V1-loop = g2

2
ξ 2

(
1 +

g2

8π2
ln

λ2|S|2 e|S|2

�2

)
, (4)

for a large field value |S|2 � g2ξ/λ, where � is a renormalization scale.
Without loss of generality we can identify the real part of S, σ ≡ √

2 Re S, as the inflaton.
Thus, the inflaton slowly rolls down the potential from a large initial value during inflation.
When the inflaton reaches

σc ≡
√

2Sc, (5)
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where φ− becomes tachyonic or

σf ≡ g

2π
, (6)

which corresponds to η(σf ) = −1, the inflation terminates. Unless the Yukawa coupling λ

is extremely small, λ � 10−4, inflation terminates when the inflaton arrives at σf . In the late
stage of inflation, the inflaton evolves as

σ 2

2
− σ 2

e

2
= g2

4π2
N, (7)

where σe = max(σf , σc) is the field value at the end of inflation and N is the number of e-folds
acquired between σ and σe. For N = 50–60 and a natural value of gauge coupling g, the
right-hand side of equation (7) is O(0.1)–O(1). This means that the inflaton must take a large
field value of the order of the sub-Planckian scale.

In the case σe = σf , by using equation (7), the amplitude of the comoving curvature
perturbation is given as

P1/2
ζ ≡ H 2

2π |σ̇ | = ξ

√
N

3
= 4.7 × 10−5

(
ξ

1.1 × 10−5

) (
N

55

)1/2

. (8)

Thus, the required magnitude of the FI term ξ to generate the appropriate amplitude of the
density perturbation is estimated as ξ = 1.1 × 10−5; in other words,√

ξ � 3.3 × 10−3 � 7.6 × 1015 GeV. (9)

The spectral index is given by ns − 1 = −1/N . Hence, it reads ns � 0.98 for N � 50. After
inflation, the cosmic string with the mass per unit length µ = 2πξ is formed. These cosmic
strings potentially affect the density perturbation; indeed, this fact is a fatal shortcoming for
the D-term inflation model [6]. The constraints on cosmic strings have been studied (for
recent studies, see e.g., [12, 14–16]). Referring even a relatively conservative result [12], the
constraints on the magnitude of the FI term are derived as√

ξ � 1.9 × 10−3, (10)

and obviously conflict with equation (9).
This problem might be avoided in the other case σe = σc with a very small Yukawa

coupling, λ � 10−4 [12]. This, however, does not entirely solve the problem, because taking
a small λ results in a larger value of Sc. If its value exceeds unity, the potential is dominantly
lifted by the supergravity effect. As a result, we again need a larger value of ξ to generate
the density perturbation with the appropriate magnitude. Indeed, this requires us to adopt not
only a small Yukawa coupling λ, but also an anomalously small gauge coupling g � 10−2

[11]. One may find another way to avoid this problem in [9, 13].

3. D-term inflation with higher order couplings

In this section, we take higher order terms in the Kähler potential into account in analyses of
the dynamics of D-term inflation. Since we focus on the inflation regime when φ+ and φ− are
small, let us consider the following Kähler potential:

K = |S|2 + |φ+|2 + |φ−|2 + f+(|S|2)|φ+|2 + f−(|S|2)|φ−|2, (11)

where f±(|S|2) are arbitrary functions of |S|2. One can find consequences due to other higher
order terms in [10].

Since the condition of the stability for φ± is unchanged even in the presence of such
couplings, we find that inflation would successfully proceed in the same manner as the simple
model which we have reviewed in the previous section.
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Figure 1. The amplitude of density perturbation P1/2
ζ (the left figure) and the scalar spectral index

ns (the right figure) for parameters g = 0.7, c+ = c− = 5.5 and ξ = 2.7×10−6. A horizontal axis
represents the number of e-folds N and N ∼ 55 would correspond to the present horizon scale.

Next, we include the radiative correction by φ± and derive the one-loop effective potential.
Here, we should note that φ± are not canonical any longer owing to the mixing terms in
the Kähler potential. The effective masses of charged scalar fields φ± and their fermionic
superpartners are

m2
ϕ± = q±g2ξ + e|S|2 λ2|S|2

(1 + f+)(1 + f−)
(12)

m2
fermion = e|S|2 λ2|S|2

(1 + f+)(1 + f−)
(13)

for the canonical variable. The effective potential including the one-loop correction for the
canonical inflaton σ is

V1-loop(σ ) = g2ξ 2

2

(
1 +

g2

8π2

[
ln

λ2σ 2

(1 + f+)(1 + f−)�2
+

σ 2

2

])
, (14)

with f± = f±(σ 2/2) for a large field value of σ . The amplitude of the comoving curvature
perturbation in this case reads

P1/2
ζ = H 2

2π |σ̇ | = 3H 3

2π |V ′| = 4πξ√
6g

[
2

σ
+ σ − f+σ

1 + f+
− f−σ

1 + f−

]−1

, (15)

under the slow-roll approximation. Here f±σ ≡ df±/dσ . Noting that f± appear in the
denominator in equation (14), which means the potential becomes flatter than logarithmic
for f± � 1, we realize, from equation (15), that the Hubble parameter during inflation,
equivalently ξ , can be reduced by maintaining the amplitude of the density perturbation P1/2

ζ .
The followings are the results of an example where we take the lowest order correction

to the Kähler potential f± = c±σ 2/2 with c± being positive constants.
The amplitude of density fluctuation is enhanced due to this flatness of the potential and

we can achieve the desired amplitude, �10−5, with smaller values of ξ . From (15) we find
that if we take c = 5.5 and g = 0.7, the amplitude of curvature fluctuation meets the CMB
normalization with a small enough value of ξ, ξ = 2.7 × 10−6, as is seen in figure 1, where
the spectral index takes ns � 0.96. The magnitude of the FI term is significantly reduced and
satisfies equation (10) from the cosmic string constraint. In addition, ns is also somewhat
lowered.
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4. Summary

The higher order terms in the Kähler potential can make the potential for the inflaton flatter
than logarithmic. The flat potential enables the reduced FI term to accomplish the generation
of the appropriate density perturbation and yields the different constraint on the magnitude
of the FI term. Then, the influence of the cosmic string formed after inflation on the CMB
spectrum can be suppressed. In addition, the change of the potential slope simultaneously
leads to a more tilted scalar spectral index ns � 0.96–0.97 than that in the model without
these corrections ns � 0.98.

Thus, we conclude that the D-term inflation model can be consistent with the absence of
CMB signature from cosmic strings, even if the Yukawa coupling λ is not extremely small. Our
model is testable by observations in near future, because the mass per unit length of the cosmic
string in our model Gµ = several × 10−7 is detectable. In fact, although we have referred to
a rather conservative bound on Gµ in this study, if one imposes a less conservative constraint
on it, our model is already under strong pressure [16]. In addition, although the model with
a very small Yukawa and gauge coupling also predicts the existence of cosmic strings, these
models are distinguishable because they predict different spectral indexes.
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